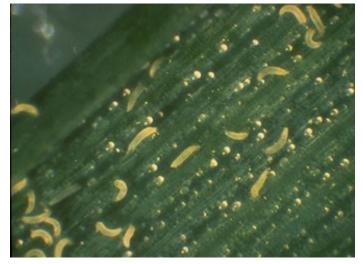
High Plains wheat mosaic virus: biology, management, and seed transmission

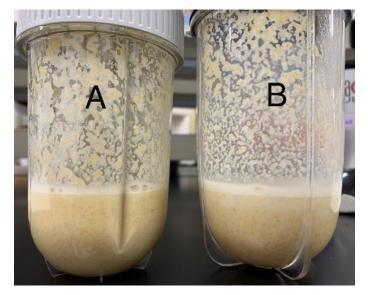
Dr. Jennifer Wilson USDA Agricultural Research Service Wooster, OH



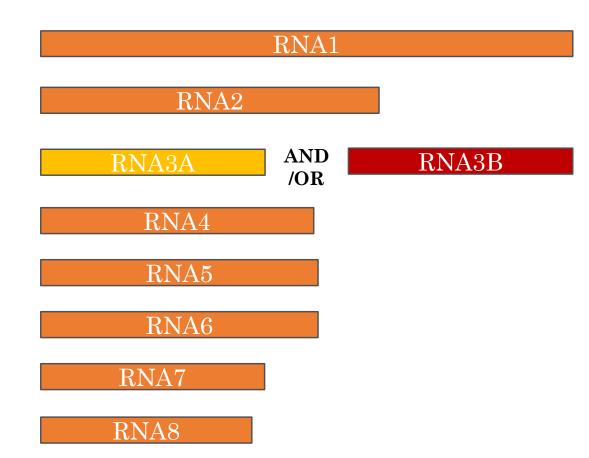
Agricultural Research Service

High plains wheat mosaic virus (HPWMoV) a.k.a High Plains virus (HPV), wheat mosaic virus (WMoV)

- First discovered in High Plains region of the US in the 1990s
- But now widespread in the corn growing regions of the U.S.
- Infects corn, wheat, barley, oats, rye, and some weedy grasses
- Transmitted by the wheat curl mite (*Aceria tosichella*)
- Renewed interest due to the recent phytosanitary restrictions and concerns over seed transmission


Seed Health Testing

And challenges with diagnostics


Seed Health Testing

- Direct testing of seed tissues for a pathogen, usually using RT-PCR or ELISA
- There are many challenges compared to testing other tissues, including challenges in disrupting seed tissues, lower pathogen titer, etc.
- RT-PCR is more sensitive than ELISA but it all depends on how well the primers recognize the virus genome

Genomic Diversity of HPWMoV

- The virus has 8 genome segments which makes it hard to sequence
- There are two versions of RNA3
- The first genome sequence was not determined until 2016
- The main primer set used for diagnostics, from LeBas *et al.* 2005, predates the first genome sequence
- Other diagnostic primer sets based on the LeBas sequence also target RNA3

Status of the HPWMoV Test

- There is no official seed health test per the National Seed Health System
- Test development is underway by joint group between Iowa State University Seed Science Center and the Bayer Vegetables diagnostic lab
 - Have developed wet and dry grinding methods
 - Currently setting up a comparative test and further refining the grinding method
- Development of additional primers sets with targets other than RNA3 are underway...

Virus Isolate Collections

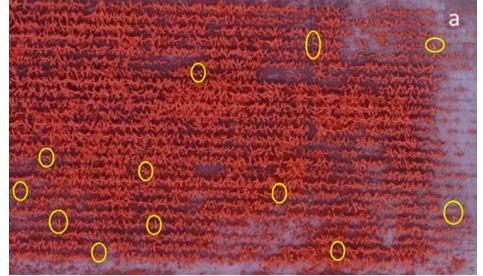


These isolates are an excellent tool to design primers and validate the seed health test

Seed Health Testing

- Direct testing of seed tissues for a pathogen, usually using RT-PCR or ELISA
- There are many challenges compared to testing other tissues, including challenges in disrupting seed tissues, lower pathogen titer, etc.
- RT-PCR is more sensitive than ELISA but it all depends on how well the primers recognize the virus genome
- These tests cannot distinguish between viable vs. inviable virus

• What is the relevance of a seed health test as far as seed transmission?


Seed Transmission

Key questions and ongoing research efforts

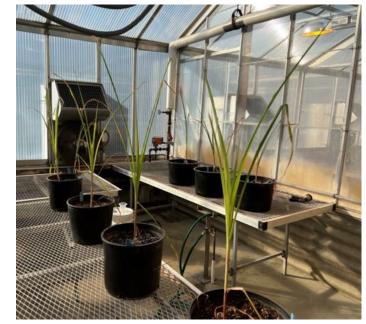
Evidence for Seed Transmission

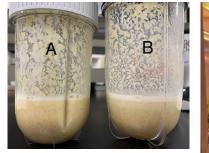
- An initial study showed the transmission rate is incredibly low (<0.01%, Forster et al. 2001).
- A recent study claims 40% yield loss and as high as 3% seed transmission in one isolated field in Utah (Nischwitz 2020)
- Anecdotally, random virus distribution in the field is indicative of seed-borne rather than vector-borne transmission

What is the true rate of seed transmission?

How to assess seed transmission?

Grow-out Tests – plant hundreds/thousands of seeds and test the resulting seedlings





How to assess seed transmission?

- 1. Inoculate corn plants and allow infected plants to grow to seed
 - Plant growth stage at inoculation
 - Host genotype/cultivar
 - Virus isolate
- 2. Collect the seeds and perform seed health testing
- 3. Grow-out the seed and test the resulting seedlings
 - How many seeds is enough?

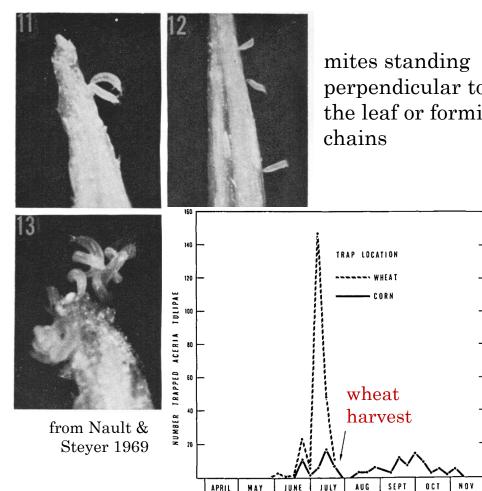
Management

Challenges and opportunities

Potential Management Strategies

Host resistance

• Does virus resistance reduce or eliminate seed transmission?


Vector management

- Very challenging to manage the vector
- But timing of infection may be important

Wheat curl mites actively facilitate their dispersal through behavior

- Mites colonize the leaf whorl they are down in the base of the leaf sheaths where they are protected from wind, pesticides, and detection
- When ready to disperse, they:
 - move to the leaf tips
 - stand perpendicular to the leaf or form chains/towers to be picked up by the wind
- Mite dispersal is driven by host plant senescence/drying or extreme overcrowding
- Mite dispersal is highest during wheat maturation and harvest

perpendicular to the leaf or forming

Potential Management Strategies

Host resistance

• Does virus resistance reduce or eliminate seed transmission?

Vector management

- Very challenging to manage the vector
- But timing of infection may be important

Seed drying/treatments

• For another maize virus, drying of seed to 15% moisture content eliminated seed transmission (Bernardo et al. 2023)

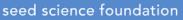
Acknowledgments

The USDA-ARS Corn & Soybean Virus Lab Wooster, OH

Dr. Erik Ohlson Research Geneticist USDA-ARS, Wooster, OH

Dr. Lindsey du Toit Professor & Extension Plant Pathologist WSU Mount Vernon NWREC

Collaborators: Bayer Crookham HM Clause Illinois Foundation Seed Syngenta


Funding Sources:

american seed trade association

